Edge-superconnectivity: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Edge-superconnectivity''' --- рёберная суперсвязность. Superconnectivity is a stronger measure of connectivity. A maximally edge-connected…») |
(нет различий)
|
Версия от 15:46, 12 апреля 2011
Edge-superconnectivity --- рёберная суперсвязность.
Superconnectivity is a stronger measure of connectivity. A maximally edge-connected graph is called super-[math]\displaystyle{ \lambda }[/math]} if every edge cut [math]\displaystyle{ (C,\bar{C}) }[/math] of cardinality [math]\displaystyle{ \delta(G) }[/math] satisfies either [math]\displaystyle{ |C| = 1 }[/math] or [math]\displaystyle{ |\bar{C}| = 1 }[/math]. In order to measure the super edge-connectivity, we use the following parameter:
[math]\displaystyle{ \lambda_{1}(G) = \min \{|(C,\bar{C})|, \; (C,\bar{C}) \mbox{ is a nontrivial edge cut}\}. }[/math]
We define the edge-superconnectivity of a graph [math]\displaystyle{ G }[/math] as the value of [math]\displaystyle{ \lambda_{1}(G) }[/math].