K-Cyclic chromatic number: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''<math>k</math>-Cyclic chromatic number''' --- <math>k</math>-циклическое хроматическое число. The '''<math>k</math>-cyclic chromati…») |
(нет различий)
|
Версия от 16:28, 18 марта 2011
[math]\displaystyle{ k }[/math]-Cyclic chromatic number --- [math]\displaystyle{ k }[/math]-циклическое хроматическое число.
The [math]\displaystyle{ k }[/math]-cyclic chromatic number [math]\displaystyle{ \chi_{k}(G) }[/math] of a plane graph is the smallest number of colours in a vertex colouring of [math]\displaystyle{ G }[/math] such that no face of size at most [math]\displaystyle{ k }[/math] has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:
[math]\displaystyle{ \chi_{3}(G) \leq 4 }[/math]
for every plane graph [math]\displaystyle{ G }[/math].
The number [math]\displaystyle{ \chi_{k}(G) }[/math] was introduced explicitly by Ore and Plummer (1969).