N-Cube graph: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''<math>n</math>-Cube graph''' --- куб <math>n</math>-мерный. Consider the set <math>Q^{n} = \{(x_{1}, x_{2}, \ldots, x_{n})| \; x_{i} \in \{0,1\}, \: i …») |
(нет различий)
|
Версия от 15:05, 18 марта 2011
[math]\displaystyle{ n }[/math]-Cube graph --- куб [math]\displaystyle{ n }[/math]-мерный.
Consider the set [math]\displaystyle{ Q^{n} = \{(x_{1}, x_{2}, \ldots, x_{n})| \; x_{i} \in \{0,1\}, \: i = 1, \ldots, n\} }[/math]. For [math]\displaystyle{ u,v \in Q^{n} }[/math] the Hamming distance [math]\displaystyle{ \rho(u,v) }[/math] is defined as the number of entries where [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] differ. An [math]\displaystyle{ n }[/math]-cube graph is a graph on the vertex set [math]\displaystyle{ Q^{n} }[/math], where two vertices [math]\displaystyle{ u, v }[/math] are adjacent iff [math]\displaystyle{ \rho(u,v) = 1 }[/math]. The [math]\displaystyle{ n }[/math]-cube graph is a regular graph with a degree [math]\displaystyle{ n-1 }[/math].