M-Convex set in G: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''<math>m</math>-Convex set in <math>G</math>''' --- <math>m</math>-выпуклое множество в графе <math>G</math>. A path <math>P</math> in <ma…») |
(нет различий)
|
Версия от 13:58, 15 марта 2011
[math]\displaystyle{ m }[/math]-Convex set in [math]\displaystyle{ G }[/math] --- [math]\displaystyle{ m }[/math]-выпуклое множество в графе [math]\displaystyle{ G }[/math].
A path [math]\displaystyle{ P }[/math] in [math]\displaystyle{ G }[/math] is called [math]\displaystyle{ m }[/math]-path if the graph induced by the vertex set [math]\displaystyle{ V(P) }[/math] of [math]\displaystyle{ P }[/math] is [math]\displaystyle{ P }[/math]. A subset [math]\displaystyle{ C }[/math] of [math]\displaystyle{ V(G) }[/math] is said to be [math]\displaystyle{ m }[/math]-convex set if, for every pair of vertices [math]\displaystyle{ x, y \in C }[/math], the vertex set of every [math]\displaystyle{ x - y }[/math] [math]\displaystyle{ m }[/math]-path is contained in [math]\displaystyle{ C }[/math]. The cardinality of a maximal proper [math]\displaystyle{ m }[/math]-convex set in [math]\displaystyle{ G }[/math] is the [math]\displaystyle{ m }[/math]-convexity number of [math]\displaystyle{ G }[/math].