Convex bipartite graph: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Convex bipartite graph''' --- выпуклый двудольный граф. Let <math>G = (X,Y,E)</math> be a ''bipartite graph''. An ordering of <math>X</mat…») |
(нет различий)
|
Версия от 13:49, 15 марта 2011
Convex bipartite graph --- выпуклый двудольный граф.
Let [math]\displaystyle{ G = (X,Y,E) }[/math] be a bipartite graph. An ordering of [math]\displaystyle{ X }[/math] has the adjacency property if for each [math]\displaystyle{ y \in Y }[/math] the neighbors of [math]\displaystyle{ y }[/math] in [math]\displaystyle{ X }[/math] are consecutive in the ordering of [math]\displaystyle{ X }[/math]. A bipartite graph [math]\displaystyle{ G }[/math] is called convex bipartite if there is an ordering of [math]\displaystyle{ X }[/math] or of [math]\displaystyle{ Y }[/math] that has the adjacency property. A bipartite graph [math]\displaystyle{ G = (X,Y,E) }[/math] is biconvex if there is an ordering of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] with the adjacency property. Convex graphs contain the bipartite permutation graphs.