K-Connected graph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''<math>k</math>-Connected graph''' --- <math>k</math>-связный граф. A graph <math>G</math> is '''<math>k</math>-connected''' if there exist <math>k</m…») |
(нет различий)
|
Версия от 17:30, 11 марта 2011
[math]\displaystyle{ k }[/math]-Connected graph --- [math]\displaystyle{ k }[/math]-связный граф.
A graph [math]\displaystyle{ G }[/math] is [math]\displaystyle{ k }[/math]-connected if there exist [math]\displaystyle{ k }[/math] internally node-disjoint chains between every pair of distinct nodes in [math]\displaystyle{ G }[/math]. A [math]\displaystyle{ k }[/math]-connected graph [math]\displaystyle{ G }[/math] is minimal if for any edge [math]\displaystyle{ e \in E }[/math], [math]\displaystyle{ G - e }[/math] is not [math]\displaystyle{ k }[/math]-connected. Usually, 2-connected graphs are called biconnected graphs and 3-connected graphs are called triconnected graphs.