Adjoint digraph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Adjoint digraph''' --- сопряженный орграф. The ''' adjoint digraph''' is defined as a graph, that is, the one whose ...) |
(нет различий)
|
Версия от 15:50, 18 января 2011
Adjoint digraph --- сопряженный орграф.
The adjoint digraph is defined as a graph, that is, the one whose arcs are exactly the converses for those of [math]\displaystyle{ G }[/math]. The adjacency operator [math]\displaystyle{ A(G^{\ast}) }[/math] of [math]\displaystyle{ G^{\ast} }[/math] is the adjoint operator [math]\displaystyle{ A(G)^{\ast} }[/math]. Though [math]\displaystyle{ G^{\ast} }[/math] is called the converse digraph of [math]\displaystyle{ G }[/math] among graph theorists, the term adjoint is often used in this sense.
The coadjoint graphs are graphs [math]\displaystyle{ G }[/math] and [math]\displaystyle{ G^{\ast} }[/math] satisfying [math]\displaystyle{ G \cong G^{\ast} }[/math].