Аноним

Машина Тьюринга: различия между версиями

Материал из WikiGrapp
нет описания правки
Нет описания правки
Строка 1: Строка 1:
'''Машина Тьюринга'''([[Turing machine|''Turing machine'']]) - одна из основных конструкций, которые были предложены для уточнения, или адекватной формализации, общего интуитивного понятия [[алгоритм|''алгоритма'']].
'''Машина Тьюринга'''([[Turing machine|''Turing machine'']]) - одна из основных конструкций, которые были предложены для уточнения, или адекватной формализации, общего интуитивного понятия [[алгоритм|''алгоритма'']].


''Недетерминированной машиной Тьюринга''
''Недетерминированной машиной Тьюринга'' (сокращенно ''НМT'') <math>M</math> называется семерка
(сокращенно ''НМT'') <math>M</math> называется семерка
<math>(Q,T,\Sigma,b,q_0,q_f,\delta)</math>, где
<math>(Q,T,\Sigma,b,q_0,q_f,\delta)</math>, где


Строка 20: Строка 19:
состояние, <math>q_f\in Q</math>;
состояние, <math>q_f\in Q</math>;


(7) <math>\delta</math> --- так называемая функция ''перехода'' ---
(7) <math>\delta</math> --- так называемая функция ''перехода'' --- отображение множества <math>Q\times T</math> в множество подмножеств в <math>Q\times T\times \{L, R, S\}</math>, где <math>L</math>  означает сдвиг головки по ленте влево, <math>R</math> --- вправо, <math>S</math> --- головка
отображение множества <math>Q\times T</math> в множество подмножеств в
<math>Q\times T\times \{L, R, S\}</math>, где <math>L</math>  означает сдвиг
головки по ленте влево, <math>R</math> --- вправо, <math>S</math> --- головка
остается на месте.
остается на месте.


Машина Тьюринга работает на неограниченной с обеих сторон ленте,
Машина Тьюринга работает на неограниченной с обеих сторон ленте, разделяемой на ячейки, одну из которых обозревает ''головка''. В любой момент времени все ячейки, кроме конечного числа, заняты
разделяемой на ячейки, одну из которых обозревает ''головка''.
пустыми символами. ''Конфигурацией'' (или ''мгновенным описанием'') машины Тьюринга <math>M</math> называется слово вида <math>xqy</math>, где <math>xy</math> --- непустая часть ленты, а <math>q</math> --- текущее состояние управляющего устройства (головка на ленте обозревает символ,
В любой момент времени все ячейки, кроме конечного числа, заняты
пустыми символами. ''Конфигурацией'' (или ''мгновенным
описанием'') машины Тьюринга <math>M</math> называется слово вида <math>xqy</math>, где
<math>xy</math> --- непустая часть ленты, а <math>q</math> --- текущее состояние
управляющего устройства (головка на ленте обозревает символ,
стоящий справа от <math>q</math>).
стоящий справа от <math>q</math>).


''Начальной'' конфигурацией <math>M</math> называется конфигурация
''Начальной'' конфигурацией <math>M</math> называется конфигурация вида <math>q_0\omega</math>, где <math>\omega\in\Sigma^*</math>. Заключительная конфигурация --- это конфигурация вида <math>xq_f y</math>.
вида <math>q_0\omega</math>, где <math>\omega\in\Sigma^*</math>. Заключительная конфигурация --- это конфигурация вида <math>xq_f
y</math>.


''Tакт'' работы машины Тьюринга <math>M</math> представляется в виде
''Tакт'' работы машины Тьюринга <math>M</math> представляется в виде
Строка 53: Строка 42:
\in \delta(q,X)</math> для некоторых <math>\gamma,\omega\in T^*</math> .
\in \delta(q,X)</math> для некоторых <math>\gamma,\omega\in T^*</math> .


<math>M</math> ''допускает'' цепочку <math>\omega\in\Sigma^*</math>, если
<math>M</math> ''допускает'' цепочку <math>\omega\in\Sigma^*</math>, если <math>q_0\omega\vdash^*_M\alpha</math>, где <math>\alpha</math> - некоторая заключительная конфигурация с пустой лентой, так называемая ''допускающая'' конфигурация. ''Языком, допускаемым'' <math>M</math> (обозначается <math>L(M)</math>), называют множество всех цепочек, допускаемых <math>M</math>.
<math>q_0\omega\vdash^*_M\alpha</math>, где <math>\alpha</math> - некоторая
заключительная конфигурация с пустой лентой, так называемая
''допускающая'' конфигурация. ''Языком,
допускаемым'' <math>M</math> (обозначается <math>L(M)</math>), называют множество всех
цепочек, допускаемых <math>M</math>.


Таким образом, подобно конечному автомату машина Тьюринга
Таким образом, подобно конечному автомату машина Тьюринга состоит из ленты, головки и управляющего устройства с конечным числом состояний.
состоит из ленты, головки и управляющего устройства с конечным
числом состояний.


Однако в машине Тьюринга лента неограниченно простирается вправо
Однако в машине Тьюринга лента неограниченно простирается вправо и влево, а головка не только читает, но и пишет. В силу этого лента в машине Тьюринга играет роль не только входной ленты
и влево, а головка не только читает, но и пишет. В силу этого
в конечном и магазинном автоматах, но и бесконечной вспомогательной памяти последнего, причем без присущих [[МП- автомат|''МП-автомату'']] ограничений на "магазинный" характер ее использования.
лента в машине Тьюринга играет роль не только входной ленты
в конечном и магазинном автоматах, но и бесконечной
вспомогательной памяти последнего, причем без присущих
МП-автомату ограничений на "магазинный" характер ее
использования.


Поэтому не случайно, что машины Тьюринга обладают большей
Поэтому не случайно, что машины Тьюринга обладают большей вычислительной мощностью, чем МП- автоматы, определяющие класс [[КС-язык|''КС-языков'']]. Известно, что язык порождается грамматикой
вычислительной мощностью, чем МП-автоматы, определяющие
составляющих тогда и только тогда, когда он допускается машиной Тьюринга.
класс КС-языков. Известно, что язык порождается грамматикой
составляющих тогда и только тогда, когда он допускается
машиной Тьюринга.


В дополнение к естественной интерпретации машины Тьюринга
В дополнение к естественной интерпретации машины Тьюринга как распознавателя, допускающего тот или иной язык, ее можно рассматривать как устройство, которое вычисляет некоторую функцию <math>f</math>. Аргументы этой функции кодируются на ленте в виде слова <math>X</math> со специальным символом (маркером), отделяющим их друг от друга. Если машина Тьюринга останавливается с заключительной конфигурацией <math>vq_fw</math>, то слово <math>Y=vw</math> рассматривается как код значения функции <math>f</math>, т.е. <math>f(X)=Y</math>.
как распознавателя, допускающего тот или иной язык, ее можно
рассматривать как устройство, которое вычисляет некоторую
функцию <math>f</math>. Аргументы этой функции кодируются на ленте в
виде слова <math>X</math> со специальным символом (маркером),
отделяющим их друг от друга. Если машина Тьюринга
останавливается с заключительной конфигурацией <math>vq_fw</math>, то
слово <math>Y=vw</math> рассматривается как код значения функции <math>f</math>,
т.е. <math>f(X)=Y</math>.


Машина Тьюринга <math>M</math> называется ''детерминированной''
Машина Тьюринга <math>M</math> называется ''детерминированной'' (сокращенно ''ДМT''), если для любых <math>q\in Q</math> и <math>X\in T</math> множество <math>\delta(q,X)</math> содержит не более одного элемента.
(сокращенно ''ДМT''), если для любых <math>q\in Q</math> и <math>X\in T</math>
множество <math>\delta(q,X)</math> содержит не более одного элемента.
==Литература==
==Литература==
[Ахо-Хопкрофт-Ульман],  
[Ахо-Хопкрофт-Ульман],