Subgraph: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Subgraph''' --- подграф, часть графа, частичный граф. '''1.'''('''Subgraph''' in a weak sense) For a graph <math>G = (V,E)</math> …») |
KVN (обсуждение | вклад) Нет описания правки |
||
| Строка 1: | Строка 1: | ||
'''Subgraph''' --- подграф, часть графа, частичный граф. | '''Subgraph''' --- [[подграф]], [[часть графа]], [[частичный граф]]. | ||
'''1.'''('''Subgraph''' in a weak sense) For a graph <math>G = (V,E)</math> this is a graph <math>H = | '''1.'''('''Subgraph''' in a weak sense) For a graph <math>G = (V,E)</math> this is a graph <math>H = | ||
Текущая версия от 12:26, 29 октября 2025
Subgraph --- подграф, часть графа, частичный граф.
1.(Subgraph in a weak sense) For a graph [math]\displaystyle{ G = (V,E) }[/math] this is a graph [math]\displaystyle{ H = (V_{H},E_{H}) }[/math] with [math]\displaystyle{ V_{H} \subseteq V }[/math] and [math]\displaystyle{ E_{H} \subseteq E }[/math]. Another name is Part of a graph.
2. (Subgraph in a strong sense) If [math]\displaystyle{ W \subseteq V }[/math] then [math]\displaystyle{ G[W] }[/math] denotes the subgraph induced by [math]\displaystyle{ W }[/math], i.e. [math]\displaystyle{ G[W] }[/math] is the subgraph with the vertex set [math]\displaystyle{ W }[/math] in which two vertices are adjacent whenever they are adjacent in [math]\displaystyle{ G }[/math]. Another name is Induced [with vertices] subgraph.