4635
правок
Glk (обсуждение | вклад)  (Новая страница: «'''Dag of control flow graph''' --- каркас уграфа.  A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic cf-grap…»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Dag of control flow graph'''   | '''Dag of control flow graph''' — "[[каркас уграфа]]."  | ||
A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic  | A '''[[DAG|dag]]''' of a ''cf-graph''<math>\,G</math> with an [[initial node]] <math>\,p</math> is an acyclic cf-graph <math>\,D</math> with the initial node <math>\,p</math> such that <math>\,V(G)=V(D)</math>, <math>\,A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the [[graph, undirected graph, nonoriented graph|graph]] <math>\,D \bigcup \{u\}</math> has a [[cycle]]. That is, <math>\,D</math> is  a maximal [[acyclic graph|acyclic]] [[subflowgraph]].  | ||
cf-graph <math>D</math> with the initial node <math>p</math> such that  | |||
<math>V(G)=V(D)</math>, <math>A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the  | ==Литература==  | ||
graph <math>D \bigcup \{u\}</math> has a cycle. That is, <math>D</math> is  a maximal acyclic  | *Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | ||
[[Категория:Основные термины]]  | |||