K-Cyclic chromatic number: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
KEV (обсуждение | вклад) Нет описания правки  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 3: | Строка 3: | ||
The '''<math>\,k</math>-cyclic chromatic number''' <math>\,\chi_{k}(G)</math> of a [[plane graph]] is the smallest number of colours in a [[vertex]] [[Coloring, colouring|colouring]] of <math>\,G</math> such that no face of size at most <math>\,k</math> has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:  | The '''<math>\,k</math>-cyclic chromatic number''' <math>\,\chi_{k}(G)</math> of a [[plane graph]] is the smallest number of colours in a [[vertex]] [[Coloring, colouring|colouring]] of <math>\,G</math> such that no face of size at most <math>\,k</math> has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:  | ||
<math>\,\chi_{3}(G) \leq 4</math>  | |||
for every plane graph <math>\,G</math>.  | for every plane graph <math>\,G</math>.  | ||
Текущая версия от 08:13, 4 декабря 2023
[math]\displaystyle{ k }[/math]-Cyclic chromatic number — [math]\displaystyle{ \,k }[/math]-циклическое хроматическое число.
The [math]\displaystyle{ \,k }[/math]-cyclic chromatic number [math]\displaystyle{ \,\chi_{k}(G) }[/math] of a plane graph is the smallest number of colours in a vertex colouring of [math]\displaystyle{ \,G }[/math] such that no face of size at most [math]\displaystyle{ \,k }[/math] has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:
[math]\displaystyle{ \,\chi_{3}(G) \leq 4 }[/math]
for every plane graph [math]\displaystyle{ \,G }[/math].
The number [math]\displaystyle{ \,\chi_{k}(G) }[/math] was introduced explicitly by Ore and Plummer (1969).
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.