K-Cyclic chromatic number: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Новая страница: «'''<math>k</math>-Cyclic chromatic number''' --- <math>k</math>-циклическое хроматическое число.   The '''<math>k</math>-cyclic chromati…»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''<math>k</math>-Cyclic chromatic number''' -  | '''<math>k</math>-Cyclic chromatic number''' — ''[[k-циклическое хроматическое число|<math>\,k</math>-циклическое хроматическое число]]''.    | ||
число.    | |||
The '''<math>k</math>-cyclic chromatic number''' <math>\chi_{k}(G)</math> of a plane graph is the smallest number of colours in a vertex colouring of <math>G</math> such that no face of  | The '''<math>\,k</math>-cyclic chromatic number''' <math>\,\chi_{k}(G)</math> of a [[plane graph]] is the smallest number of colours in a [[vertex]] [[Coloring, colouring|colouring]] of <math>\,G</math> such that no face of size at most <math>\,k</math> has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:  | ||
size at most <math>k</math> has two boundary vertices of the same colour. It is  | |||
easy to see that the Four Colour Theorem may be stated in the form:  | |||
<math>\chi_{3}(G) \leq 4</math>  |         <math>\,\chi_{3}(G) \leq 4</math>  | ||
for every plane graph <math>G</math>.  | for every plane graph <math>\,G</math>.  | ||
The number <math>\chi_{k}(G)</math> was introduced explicitly by Ore and Plummer  | The number <math>\,\chi_{k}(G)</math> was introduced explicitly by Ore and Plummer (1969).  | ||
(1969).  | |||
==Литература==  | |||
*Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||
Версия от 08:10, 4 декабря 2023
[math]\displaystyle{ k }[/math]-Cyclic chromatic number — [math]\displaystyle{ \,k }[/math]-циклическое хроматическое число.
The [math]\displaystyle{ \,k }[/math]-cyclic chromatic number [math]\displaystyle{ \,\chi_{k}(G) }[/math] of a plane graph is the smallest number of colours in a vertex colouring of [math]\displaystyle{ \,G }[/math] such that no face of size at most [math]\displaystyle{ \,k }[/math] has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:
       [math]\displaystyle{ \,\chi_{3}(G) \leq 4 }[/math]
for every plane graph [math]\displaystyle{ \,G }[/math].
The number [math]\displaystyle{ \,\chi_{k}(G) }[/math] was introduced explicitly by Ore and Plummer (1969).
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.