Cycle cover problem: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Новая страница: «'''Cycle cover problem''' --- задача о покрытии графа циклами.   Let <math>G = (V,E)</math> be a connected undirected graph. A non-negativ…»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Cycle cover problem'''   | '''Cycle cover problem''' — ''[[задача о покрытии графа циклами]]''.    | ||
Let <math>G = (V,E)</math> be a connected undirected graph. A non-negative cost or length  | Let <math>\,G = (V,E)</math> be a [[connected graph|connected undirected graph]]. A non-negative cost or length is associated with each [[edge]]. The '''cycle cover problem''' consists in determining a least cost cover of <math>\,G</math> with [[simple cycle|simple cycles]], each containing at least three different edges.  | ||
is associated with each edge. The '''cycle cover problem''' consists in  | |||
determining a least cost cover of <math>G</math> with simple cycles, each  | ==Литература==  | ||
containing at least three different edges.  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||
Текущая версия от 06:37, 21 декабря 2021
Cycle cover problem — задача о покрытии графа циклами.
Let [math]\displaystyle{ \,G = (V,E) }[/math] be a connected undirected graph. A non-negative cost or length is associated with each edge. The cycle cover problem consists in determining a least cost cover of [math]\displaystyle{ \,G }[/math] with simple cycles, each containing at least three different edges.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.