4635
правок
Glk (обсуждение | вклад)  (Новая страница: «'''Cyclability''' --- цикличность.   A subset <math>S</math> of vertices of a graph <math>G</math> is called '''cyclable''' in <math>G</math> if there is …»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Cyclability''' ---   | '''Cyclability''' — ''[[цикличность]]''.   | ||
A subset <math>\,S</math> of [[vertex|vertices]] of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is called '''cyclable''' in  | |||
<math>\,G</math> if there is in <math>\,G</math> some cycle containing all the vertices of <math>\,S</math>.  | |||
It is known that if <math>\,G</math> is a [[k-Connected graph|<math>\,3</math>-connected graph]] of order <math>\,n</math> and if <math>\,S</math>  | |||
is a subset of vertices such that the degree sum of any four independent vertices of <math>\,S</math> is at least <math>\,n + 2\alpha (S,G) - 2</math>, then <math>\,S</math> is cyclable. Here <math>\alpha (S,G)</math> is the number of vertices of a maximum independent set of <math>\,G[S]</math>.  | |||
==See also==  | ==See also==  | ||
*''Pancyclable graph''.  | |||
* ''[[Pancyclic graph|Pancyclable graph]]''.  | |||
==Литература==  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||