4625
правок
Glk (обсуждение | вклад) (Новая страница: «'''Cross''' --- скрещивание. Given a bipartite graph <math>B = (U \cup V,E)</math>, two non-adjacent edges <math>e,e' \in E</math> with <math>e = (u_{1}…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Cross''' | '''Cross''' — ''[[скрещивание]].'' | ||
Given a bipartite graph <math>B = (U \cup V,E)</math>, two non-adjacent edges <math>e,e' | Given a [[bipartite graph]] <math>B = (U \cup V,E)</math>, two non-[[adjacent edges]] <math>e,e'\in E</math> with <math>e = (u_{1},v_{1})</math> and <math>e' = (u_{2},v_{2})</math> are said to form a '''cross''' if <math>(u_{1},v_{2}) \in E</math> and <math>(u_{2},v_{1}) \in E</math>. | ||
\in E</math> with <math>e = (u_{1},v_{1})</math> and <math>e' = (u_{2},v_{2})</math> are said to | Two [[edge|edges]] are said to be '''[[cross-adjacent edges|cross-adjacent]]''' if either they are adjacent (i.e. share a common [[node]]) or they form a cross. A '''[[cross-free matching]]''' in <math>B</math> is a set of edges <math>E' \subseteq E</math> with the property that no two edges <math>e,e' \in E'</math> are cross-adjacent. A '''[[cross-free coloring]]''' of <math>B</math> is a ''coloring'' of the edge set <math>E</math> subject to the restriction that no pair of cross-adjacent edges has the same color. | ||
form a '''cross''' if <math>(u_{1},v_{2}) \in E</math> and <math>(u_{2},v_{1}) \in E</math>. | |||
Two edges are said to be '''cross-adjacent''' if either they are | |||
adjacent (i.e. share a common node) or they form a cross. A '''cross-free matching''' in <math>B</math> is a set of edges <math>E' \subseteq E</math> with | |||
the property that no two edges <math>e,e' \in E'</math> are cross-adjacent. A | |||
'''cross-free coloring''' of <math>B</math> is a ''coloring'' of the edge set | |||
<math>E</math> subject to the restriction that no pair of cross-adjacent edges | |||
has the same color. | |||
The '''cross-chromatic index''', <math>\chi^{\ast}(B)</math>, of <math>B</math> is the | The '''[[cross-chromatic index]]''', <math>\chi^{\ast}(B)</math>, of <math>B</math> is the minimum number of colors required to get a cross-free coloring of <math>B</math>. The '''[[cross-free matching number]]''' of <math>B</math>, <math>m^{\ast}(B)</math>, is defined as the edge cardinality of the maximum cross-free matching in <math>B</math>. | ||
minimum number of colors required to get a cross-free coloring of <math>B</math>. | |||
The '''cross-free matching number''' of <math>B</math>, <math>m^{\ast}(B)</math>, is defined as | ==Литература== | ||
the edge cardinality of the maximum cross-free matching in <math>B</math>. | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |