Аноним

Laplacian matrix: различия между версиями

Материал из WikiGrapp
Нет изменений в размере ,  24 сентября 2018
м
нет описания правки
(Новая страница: «'''Laplacian matrix''' --- лапласиан. Let <math>G</math> be a simple graph on <math>n</math> vertices. Let <math>deg_{i}</math> denote the degree of a ver…»)
 
мНет описания правки
 
Строка 13: Строка 13:
For a weighted graph <math>G</math> on vertices labelled <math>1, \ldots, n</math>, the '''Laplacian matrix''' of <math>G</math> is the <math>n \times n</math> matrix <math>L</math> with
For a weighted graph <math>G</math> on vertices labelled <math>1, \ldots, n</math>, the '''Laplacian matrix''' of <math>G</math> is the <math>n \times n</math> matrix <math>L</math> with


<math>L_{ij} = \left\{\begin{array}{l} -\theta,\mbox{ if }i\neq j\mbox{
<math>L_{ij} = \left\{\begin{array}{l} -\theta,\mbox{ if }i\neq j\mbox{ and }(i,j)\mbox{ is an edge of }G\mbox{ with weight }\theta, \\
and }(i,j)\mbox{ is an edge of }G\mbox{ with weight }\theta, \\
0, \mbox{ if }(i,j)\mbox{ and }(i,j)\mbox{ is not an edge of }G, \\
0, \mbox{ if }(i,j)\mbox{ and }(i,j)\mbox{ is not an edge of }G, \\
\mbox{the sum of weights of edges incident with }i,\mbox{ if
\mbox{the sum of weights of edges incident with }i,\mbox{ if }i=j\end{array}\right.</math>
}i=j\end{array}\right.</math>


It is well-known that if <math>G</math> is connected, then the nullity of <math>L</math> is
It is well-known that if <math>G</math> is connected, then the nullity of <math>L</math> is
1, and the null space of <math>L</math> is spanned by the all ones vector,
1, and the null space of <math>L</math> is spanned by the all ones vector,
<math>1_{n}</math>. The second smallest eigenvalue of <math>L</math> is known as the '''algebraic connectivity''' of <math>G</math>.
<math>1_{n}</math>. The second smallest eigenvalue of <math>L</math> is known as the '''algebraic connectivity''' of <math>G</math>.
7

правок