Аноним

K-Cocomparability ordering: различия между версиями

Материал из WikiGrapp
нет описания правки
(Новая страница: «'''<math>k</math>-Cocomparability ordering''' --- <math>k</math>-косравнимое упорядочение. Let <math>G = (V,E)</math> be a graph and <math>k<…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''<math>k</math>-Cocomparability ordering''' --- <math>k</math>-косравнимое упорядочение.
'''<math>\,k</math>-Cocomparability ordering''' — ''[[k-Косравнимое упорядочение|<math>\,k</math>-косравнимое упорядочение]].''


Let <math>G = (V,E)</math> be a graph and <math>k</math> a positive number. A
Let <math>\,G = (V,E)</math> be a [[graph, undirected graph, nonoriented graph|graph]] and <math>\,k</math> a positive number. A '''<math>\,k</math>-cocomparability ordering''' (or '''<math>k</math>-CCPO''') of <math>\,G</math> is an ordering of its [[vertex|vertices]] such that for every choice of vertices <math>\,u, v, w</math> we have the following:
'''<math>k</math>-cocomparability ordering''' (or '''<math>k</math>-CCPO''') of <math>G</math> is an ordering of
its vertices such that for every choice of vertices <math>u, v, w</math> we have the following:


<math>u < v < w \wedge d(u,w) \leq k \Rightarrow d(u,v) \leq k \vee d(v,w)
:::::<math>u < v < w \wedge d(u,w) \leq k \Rightarrow d(u,v) \leq k \vee d(v,w) \leq k.</math>
\leq k.</math>


A graph <math>G</math> is called a '''<math>k</math>-cocomparability graph''' if it admits a
A graph <math>\,G</math> is called a '''<math>k</math>-cocomparability graph''' if it admits a
<math>k</math>-CCPO.
<math>\,k</math>-CCPO.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.