K-Chorded bigraph: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''<math>k</math>-Chorded bigraph''' --- <math>k</math>-хордовый двудольный граф. A bigraph is mathcalled '''<math>k</math>-chorded''' if eac…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''<math>k</math>-Chorded bigraph''' --- <math>k</math>-хордовый двудольный граф.  
'''<math>k</math>-Chorded bigraph''' — [[k-хордовый двудольный граф|<math>k</math>-хордовый двудольный граф]].  


A bigraph is mathcalled '''<math>k</math>-chorded''' if each of its non- ''quad cycle'' has at least <math>k</math> chords (so, for example, a 4-chorded bigraph has
A [[bigraph]] is called '''<math>k</math>-chorded''' if each of its non- ''[[quad cycle]]'' has at least <math>k</math> [[chord|chords]] (so, for example, a 4-chorded bigraph has
no 6-cycles, induced or not, and an <math>\infty</math>-chorded bigraph has no
no 6-cycles, induced or not, and an <math>\infty</math>-chorded bigraph has no
non-quad cycles, induced or not).
non-quad cycles, induced or not).
==Литература==
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 18:09, 4 апреля 2013

[math]\displaystyle{ k }[/math]-Chorded bigraph[math]\displaystyle{ k }[/math]-хордовый двудольный граф.

A bigraph is called [math]\displaystyle{ k }[/math]-chorded if each of its non- quad cycle has at least [math]\displaystyle{ k }[/math] chords (so, for example, a 4-chorded bigraph has no 6-cycles, induced or not, and an [math]\displaystyle{ \infty }[/math]-chorded bigraph has no non-quad cycles, induced or not).

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.