Adjacent forest graph: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Создана новая страница размером '''Adjacent forest graph''' --- смежный граф лесов.   Let <math>G</math> be a connected graph. Given <math>1 \leq \omega \...)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Adjacent forest graph'''   | '''Adjacent forest graph''' — ''[[смежный граф лесов]].''   | ||
Let <math>G</math> be a connected graph. Given <math>1 \leq \omega \leq |V(G)| - 1</math>,  | Let <math>\,G</math> be a [[connected graph]]. Given <math>1 \leq \omega \leq |V(G)| - 1</math>,  | ||
the '''adjacent forest graph''' of <math>G</math>, denoted by  | the '''adjacent forest graph''' of <math>\,G</math>, denoted by  | ||
<math>F_{\omega}^{a}(G)</math>, is defined as a spanning subgraph of a ''forest graph'' <math>F_{\omega}(G)</math>; its two vertices are adjacent if and only if  | <math>F_{\omega}^{a}(G)</math>, is defined as a [[spanning subgraph]] of a ''[[forest graph]]'' <math>\,F_{\omega}(G)</math>; its two [[vertex|vertices]] are adjacent if and only if  | ||
the only two edges in the symmetric difference of their corresponding  | the only two [[edge|edges]] in the symmetric difference of their corresponding  | ||
forests are adjacent in <math>G</math>.  | [[forest|forests]] are adjacent in <math>\,G</math>.  | ||
==See==  | ==See==  | ||
*'' Forest graph''.  | * ''[[Forest graph]]''.  | ||
Текущая версия от 06:26, 17 ноября 2011
Adjacent forest graph — смежный граф лесов.
Let [math]\displaystyle{ \,G }[/math] be a connected graph. Given [math]\displaystyle{ 1 \leq \omega \leq |V(G)| - 1 }[/math], the adjacent forest graph of [math]\displaystyle{ \,G }[/math], denoted by [math]\displaystyle{ F_{\omega}^{a}(G) }[/math], is defined as a spanning subgraph of a forest graph [math]\displaystyle{ \,F_{\omega}(G) }[/math]; its two vertices are adjacent if and only if the only two edges in the symmetric difference of their corresponding forests are adjacent in [math]\displaystyle{ \,G }[/math].